研究方向:深度学习,因果推断,机器学习的可解释性
办公邮箱:chenxuexin@gpnu.edu.cn
个人简介:
陈学信,男,博士,广东技术师范大学计算机科学学院专任教师。主要从事机器学习的可解释性与因果推断的研究,发表SCI和EI论文共7篇,其中以第一作者发表的论文4篇。
教育背景:
2021.09——2025.06:广东工业大学,计算机科学与技术专业,工学博士学位。
2023.04——2024.03:剑桥大学,工程系,联合培养。
2018.09——2021.06:广东工业大学,计算机科学与技术专业,工学硕士学位。
2014.09——2018.06:广东工业大学,应用统计学专业,理学学士学位。
代表性论文:
1. XuexinChen(陈学信), etal.Feature Attribution withNecessityandSufficiencyviaDual-stagePerturbationTestforCausalExplanation. InternationalConferenceonMachineLearning.2024. (ICML,CCF-A 会议)
2. Xuexin Chen(陈学信), et al. Unifying Invariant and Variant Features for Graph Out-of-Distribution via Probability of Necessity and Sufficiency. Neural Networks. 2024. (中科院一区)
3. Xuexin Chen(陈学信), et al. Motif graph neural network. IEEE Transactions on Neural Networks and Learning Systems. 2024. (中科院一区)
4. Xuexin Chen(陈学信), et al. Interpretable High-order Knowledge Graph Neural Network for Predicting Synthetic Lethality in Human Cancers. Briefings in Bioinformatics. 2024. (中科院二区)
5. Ruichu Cai,XuexinChen(陈学信), etal.Dual-dropoutgraphconvolutionalnetworkforpredictingsynthetic lethalityinhumancancers. Bioinformatics.2020. (中科院三区)
6. YuxuanZhu, Ruichu Cai,XuexinChen(陈学信),etal.Ontheprobabilityof necessity andsufficiencyof explaining graph neural networks: A lower bound optimization approach.Neural Networks.2022. (中科院一区)
7. Ruichu Cai, Zhifang Jiang, Zijian Li, Weilin Chen,Xuexin Chen(陈学信), et al. From Orthogonality to Dependency: Learning Disentangled Representation for Multi-Modal Time-Series Sensing Signals. The Web Conference. 2024. (CCF-A 会议)